Abstract

본 연구는 삼차원적 유한요소분석을 통하여 연결부 형태가 다른 두 가지 scallop 임플란트의 경부 나사선 피치가 응력 분포에 미치는 영향을 간접적으로 확인하고자 하였다. 4가지 경부 나사선 피치 (0.4mm, 0.5mm, 0.6mm, 0.7mm)를 갖는 scallop 임플란트를 두 가지 다른 연결부 형태 (platform matching connection, platform mismatching connection)로 지대주와 연결되는 유한요소모형을 설계하였다. 8개의 모든 모델에 100N의 하중을 수직 및 30도 경사 방향으로 인가하여, 임플란트, 지대주, 그리고 치조골에 가해지는 최대등가응력을 분석하였다. 유한요소분석결과 응력은 치밀골에 집중되었다. 작은 나사 피치가 설계된 platform mismatching connection 모델에서 수직 방향과 경사하중 시 최대등가응력이 가장 낮게 나타났다. 측정되었다. Platform matching connection 모델에서는 경사하중의 경우 0.6mm, 수직하중의 경우 0.4mm 나사 피치에서 가장 낮은 최대등가응력을 보였다. 따라서 scallop 임플란트에서 platform mismatching connection은 최대등가응력을 감소시키는 데 중요한 역할을 하며, 경부 나사 피치가 작을수록 최대등가응력이 감소되는 경향을 보임을 알 수 있었다. Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.