Abstract

The paper considers the possibility of equipping engineering vehicles with inertial capacitance energy storage units, which should allow the power plant loads to be evened out, in turn leading to reducing the output power, mass and dimensions of the plant. In a range of engineering vehicles, such as excavators, bulldozers, diesel shunter locomotives and so on, loads are of a substantially irregular character. Peak loads are what determines the output power of power plants. It is evident that the power plant is not fully loaded most of the time. We propose a technological solution for balancing peak loads in engineering vehicles. Since operation modes of engineering vehicles change relatively frequently, it is efficient and advisable to equip them with energy storage units. The storage unit will not only level the power plant load, but also allow the energy to be recuperated during deceleration, which should improve the energy efficiency of the machine. We present the theoretical background required to develop an inertial capacitance energy storage unit, which is implemented as a direct current machine featuring a super flywheel. Employing flywheels in engineering vehicles is feasible due to their total mass requirements being flexible. Another advantage of certain engineering vehicles is their electro-mechanical transmission, the presence of which should minimise the development effort concerning the inertial capacitance energy storage unit discussed in the paper engineering vehicle, energy storage unit, super flywheel, power plant, energy efficiency

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call