Abstract
Recurrent neural networks have been successfully applied to communications channel equalization. Major disadvantages of gradient-based learning algorithms commonly employed to train recurrent neural networks are slow convergence rates and long training sequences required for satisfactory performance. In a high-speed communications system, fast convergence speed and short training symbols are essential. We propose decision feedback equalizers using a recurrent neural network trained with Kalman filtering algorithms. The main features of the proposed recurrent neural equalizers, utilizing extended Kalman filter (EKF) and unscented Kalman filter (UKF), are fast convergence rates and good performance using relatively short training symbols. Experimental results for two time-varying channels are presented to evaluate the performance of the proposed approaches over a conventional recurrent neural equalizer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have