Abstract
본 논문은 온톨로지(ontology)에 기반 한 자동화된 웹 페이지 분류 시스템을 제안한다. 웹 페이지의 분류를 위하여 첫 번째 단계에서는 각 웹 페이지가 속한 범주(category)를 대표할 수 있는 단어를 선정하며, 이를 위하여 단어빈도와 문서빈도를 곱한 값을 계산한다. 두 번째 단계에서는 첫 번째 단계에 의해 선택된 단어의 정보이득(information gain)을 계산해 분류 확률이 높은 단어를 우선적으로 선정한다. 두 단계를 통하여 선정된 단어들과 웹 페이지의 분류 정보를 가지고, 기계학습에 의하여 컴파일 된 규칙(compiled rules)을 생성한다. 생성된 규칙은 임의의 웹 페이지들을 도메인 온톨로지에 의해 정의된 범주 별로 분류할 수 있도록 한다. 본 논문의 실험에서는 주어진 웹 페이지 집합에서 각 범주 별로 평균 240개의 단어로부터 78개의 단어를 결과적으로 선정하였으며, 이를 바탕으로 웹 페이지 분류 규칙을 생성하였다. 실험 결과에서 제안한 시스템의 평균 분류 정확도는 약 83.52%로 측정되었다. In this paper, we present an automated Web page classification system based upon ontology. As a first step, to identify the representative terms given a set of classes, we compute the product of term frequency and document frequency. Secondly, the information gain of each term prioritizes it based on the possibility of classification. We compile a pair of the terms selected and a web page classification into rules using machine learning algorithms. The compiled rules classify any Web page into categories defined on a domain ontology. In the experiments, 78 terms out of 240 terms were identified as representative features given a set of Web pages. The resulting accuracy of the classification was, on the average, 83.52%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.