Abstract
In recent years, the earthquake sequence in Christchurch, New Zealand (NZ) was unprecedented in terms of repeated earthquake shocks with substantial levels of ground motion affecting modern infrastructure, and in particular, broad and precise reports for liquefaction-induced permanent ground deformation (PGD) and repairs of wastewater (WW) pipelines were collected. In this study, a geographical information system (GIS) and linear regression analysis were performed using data for the length and repair points of earthenware (EW) and concrete (CONC) wastewater pipelines acquired after the MW 6.2 February 22, 2011 earthquake. The repair rates (repairs/km) for the EW and CONC wastewater pipelines were evaluated inside the areas of PGD, and both angular distortion of ground and lateral ground strain were calculated from the high resolution LiDAR data acquired before and after the seismic event. The research results showed that both pipelines have similar trends of damage but the CONC wastewater pipeline with higher stiffness showed less damage. The results of linear regression analyses can be used to predict the repair rates for EW and CONC wastewater pipelines inside the areas of PGD induced by future earthquakes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have