Abstract
Most promising materials for creating biointerfaces are electrically conductive materials based on carbon and its modifications. Such materials can be used for targeted stimulation of cells and tissues with high spatial resolution. In this work, carbon nanotubes are considered to be used for electrically conductive materials creation because of their outstanding electrical, mechanical and optical properties. It was shown that under the influence of laser radiation, it is possible to achieve the effect of welding with the formation of branched networks on a silicon substrate and within the biopolymer matrix. As a result of experimental studies, the radiation energy density was established at which the effect of single-walled carbon nanotubes bonding to each other appears – 0.061 J/cm2. The mechanism of porous materials based on biopolymers albumin, collagen and chitosan formation containing single-walled carbon nanotubes has been determined. Materials were made from single-walled carbon nanotubes and biopolymers with controlled pore size. The pore volume was more than 60 % of the nanocomposite volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.