Abstract

Арифметические свойства значений гипергеометрической функции изучались различными методами, начиная с работы К.~Зигеля 1929 г.. Это направление теории диофантовых приближений исследовалось такими авторами как М.~Хата [1]-[2], Ф.~Аморозо и К.~Виола [3], А.~Хеймонен, В.~Матала-Ахо и К.~Ваананен [4]-[5] и многими другими. В последние десятилетия был получен ряд интересных результатов в этой области, усилено много ранее известных оценок меры иррациональности, как для значений гипергеометрической функции, так и для других величин.В настоящее время одним из широко применяемых подходов при построении оценок показателя иррациональности является использование интегральных конструкций, симметричных относительно какой-либо замены параметров. Симметризованные интегралы и ранее использовались разными авторами, например, в работе Дж.~Рина [6], но наиболее активное развитие это направление приобрело после работы В.~Х.~Салихова [7], получившего с помощью симметризованного интеграла новую оценку для $\ln{3}$. Впоследствии симметричность различного типа позволила доказать ряд значимых результатов. Были получены новые оценки для некоторых значений логарифмической функции, функции $\arctg{x}$, классических констант (см., например, [8] -- [18]). В 2014~г., используя общие симметризованные многочлены первой степени вида $At-B$, где $t=(x-d)^2$, К.~Ву и Л.~Ванг усилили результат В.~Х.~Салихова о мере иррациональности $\ln{3}$ (см.[19]). В работе [20] идея симметричности была применена к интегралу Р.~Марковеккио, доказавшего ранее новую оценку для $\ln{2}$ в [21], что позволило улучшить результат для $\pi/3$.Данная статья является продолжением работы [22], обобщающей результаты для двух типов симметричных интегральных конструкций. Первая позволяет более эффективно оценить показатели иррациональности чисел вида $\sqrt{d}\ln{\frac{\sqrt{d}+1}{\sqrt{d}-1}}$ при $d=2^{2k+1}, d=4k+1$ для некоторых $k\in\mathbb N$ (см. [22]). Используя данный интеграл, также можно получить оценки меры иррациональности чисел $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}},\ k\in\mathbb N$. Вторая рассматриваемая интегральная конструкция дает возможность оценивать меру иррациональности некоторых значений логарифмической функции, используя симметричность другого типа, что было подробно рассмотрено в [22]. Данный интеграл позволяет также оценивать меру иррациональности значений $\frac{1}{\sqrt{k}}\arctg{\frac{1}{\sqrt{k}}}$. Обобщение этого случая предлагается в данной работе.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call