Abstract

Sample surface examination in atomic force microscopy is carried out using cantilevers having the form of elastic consoles with sharp needle (tip) at the free end. Quality of images obtained from atomic force microscope (AFM) heavily depends on tip sharpness degree. Silicon cantilevers made based on wet anisotropic etching are widely used in atomic force microscopy. This paper studies the dependence of the shape and size of the resulting tip on the concentration of KOH in the solution, as well as the effect of pyrogenic oxidation and oxidation in a dry oxygen atmosphere on the sharpness of the tip during the sharpening process. It was shown that when 70 % concentration is used, tips with the highest aspect ratio and maximum height are obtained. In this case, the shape of the needle is an octagonal pyramid, the lateral faces of which are formed by eight crystallographic planes from {311} and {131}. It was found that in a two-stage sharpening process, consisting of pyrogenic oxidation and oxidation in a dry oxygen atmosphere, it is possible to form sufficiently sharp probes with a tip radius of 2–5 nm and an apex angle of 14–24°. It has been established that a one-stage sharpening process based on pyrogenic oxidation provides only the production of probes with a radius of about 14 nm. Comparative tests of the manufactured probes in obtaining AFM images of a test sample of a polycrystalline silicon film with hemispherical grains (HSG-Si) were presented. Research study has revealed that such a statistical parameter as the relative increment of the surface area Sdr is the most sensitive to probe sharpness for surfaces of the HSG-Si film type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call