Abstract

본 연구는 활동관찰 훈련이 편마비 환자의 보행에 미치는 영향에 대하여 평가하였다. 본 연구에 참여자는 실험군 10명과 대조군 10명으로 무작위로 배정되었다. 두 그룹 모두 중추신경계 발달 치료를 6주 동안 1회당 1시간씩 주당 6회 훈련을 받았다. 실험군은 활동 관찰훈련을 6주 동안 1회당 10분씩 주당 3회를 중추신경계 발달치료와 병행하여 훈련받았다. 실험군과 대조군은 보행속도, 마비측 보장, 비마비측 보장, 마비측 활보장, 비마비측 활보장, 두발지지기, 분속수, 일어나 걸어가기 검사를 평가하였다. 활동관찰 훈련을 실시한 그룹에서 편마비 환자의 보행속도, 마비측 보폭, 마비측 활보장, 분속수, 일어나 걸어가기 검사에서 유의하게 향상되었다. 위의 결과를 통하여 활동관찰 훈련은 편마비 환자의 보행 능력을 향상하는 데 효과가 있음을 확인하였다. 따라서 활동관찰 훈련 결과는 편마비 환자들에게 유용하고 적절한 훈련으로 제안할 수 있을 것이다. This study was to evaluate the effects of an action observation to improve on gait in stroke patients. Participants were randomly allocated to two groups: experimental (n=10) and control (n=10). Both groups were trained for 60 minutes, 6 times a week during 6 weeks by neuro-development treatment. Experimental group practiced additional action observation for 3 session 10 minutes per week 6 weeks. Both groups were evaluated by gait velocity, affected step length, non affected step length, affected stride length, non affected stride length, double support time, cadence, and timed up and go to test. There were significantly increased by action observation in outcomes of the gait performance from the gait velocity, affected side step length, affected side stride length, cadence, timed up and go test. In conclusion, the action observation improves gait performance in stroke patients. The results suggest that action observation training is feasible and suitable for individuals with hemiparesis patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.