Abstract

In an environment where ultra-high-precision equipment is used, vibration inevitably occurs due to various factors. These vibrations generate fatal effects, such as defect generation and reduced production yield, on ultra-high-precision production equipment. Among the multiple methods for solving vibration problems, a Tuned Mass Damper (TMD) is a useful technique that reduces vibration without changing the existing structure by attaching a passive dynamic system consisting of additional mass, spring, and damper. However, it is difficult to realize fine-tuning of the system parameters for optimal performance because the passive elements have structural limitations. An active TMD, which has a form wherein sensors, actuators, and a control device are added to the passive TMD structure, was introduced. It has higher performance than passive TMD because dynamic characteristics can be induced to stable and highly damped by a well-designed control algorithm realized by software in the control device. In this study, an active TMD was developed utilizing passive TMD with a voice coil actuator and attached to the center of both end fixed beam that assumed a single-degree-of-freedom structure. A dual-loop control algorithm using a non-minimum phase system was designed for a high-damped response while retaining stability. The modal test was performed for experimental evaluation and excellent performance of active TMD was verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call