Abstract
The wind power plants were installed in many places because of the low climate changing effects since 2000. Generally, the wind power plants located in the seaside and the mountainous area and the heights of the windmills are about 40 m~140 m above the ground level. So the noises emitted from the wind power plants propagate far away compared with other environment noise sources like trains and cars noise. Because of these reasons, the noise emitted from the wind power plant is easy to cause the additional social problems like as noise complaints. Under the situation, the ministry of environment has established the guideline to evaluate the environmental effects for the wind power plant. According to the guideline, the noise of the wind power plant has to meet 55 dB(A) at daytime and 45 dB(A) at night in the residential area, which is regulated in the noise and vibration management law. But, it is difficult to estimate the noise emitted from the wind power plant because of the absence of the prediction model of the wind power plant noise. Therefore, the noise prediction model for wind power plants using the regression analysis method is developed in this study. For the development of the model, the sound pressure levels of the wind power plants in Jeju island are measured and the correlations between the sound pressure levels are analyzed. Finally, the prediction equation of the wind power plant noise using by regression analysis method derived. The prediction equation for the wind power plant noise proposed in this study can be useful to evaluate the environmental effects in any wind power plant development district.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Korean Society for Noise and Vibration Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.