Abstract

In this paper, we investigate a method of reducing the computational cost in speech recognition by dimensionality reduction of MFCC feature vectors. Eigendecomposition of the feature vectors renders linear transformation of the vectors in such a way that puts the vector components in order of variances. The first component has the largest variance and hence serves as the most important one in relevant pattern classification. Therefore, we might consider a method of reducing the computational cost and achieving no degradation of the recognition performance at the same time by dimensionality reduction through exclusion of the least-variance components. Experimental results show that the MFCC components might be reduced by about half without significant adverse effect on the recognition error rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.