Abstract
A dynamic time warping based speech recognition system with neural network trained templates is proposed. The algorithm for training the templates is derived based on minimizing classification error of the speech classifier. A speaker-independent isolated digit recognition experiment is conducted and achieves a 0.89% average recognition error rate with only one template for each digit, indicating that the derived templates are able to capture the speaker-invariant features of speech signals. Both nondiscriminative and discriminative versions of the neural net template training algorithm are considered. The former is based on maximum likelihood estimation. The latter is based on minimizing classification error. It is demonstrated through experiments that the discriminative training algorithm is far superior to the nondiscriminative one, providing both smaller recognition error rate and greater discrimination power. Experiments using different feature representation schemes are considered. It is demonstrated that the combination of the feature vector and the delta feature vector yields the best recognition result. >
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.