Abstract

맵리듀스는 빅데이터 분석 및 처리에 널리 사용되는 프로그래밍 모델이다. 빅데이터 분석을 위해 흔히 사용되는 질의 중 하나는 집계 질의(aggregate query)이다. 본 논문에서는 여러 사용자가 동시에 여러 집계 질의를 계속해서 요청하는 경우, 맵리듀스를 사용하여 이들 질의를 효율적으로 처리하는 방법을 제안한다. 제안 방법은 각 집계 질의를 개별적으로 처리하지 않고, 여러 집계 질의를 묶어 하나의 최적화된 맵리듀스 잡(job)으로 만들어 일괄 처리한다. 그 결과로 제안 방법은 단순 방법에 비해 시간당 처리하는 질의 수를 크게 증가시킨다. 성능 평가를 통해, 제안 방법은 단순 방법에 비해 질의 처리 속도를 크게 향상시킴을 보인다. MapReduce is a widely used programming model for analyzing and processing Big data. Aggregate queries are one of the most common types of queries used for analyzing Big data. In this paper, we propose an efficient method for processing an aggregate query stream, where many concurrent users continuously issue different aggregate queries on the same data. Instead of processing each aggregate query separately, the proposed method processes multiple aggregate queries together in a batch by a single, optimized MapReduce job. As a result, the number of queries processed per unit time increases significantly. Through various experiments, we show that the proposed method improves the performance significantly compared to a naive method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.