Abstract

Nowadays, automatic digging operation of an excavator is a big challenge due to the complexity of digging environment, the hardness of soil and buried obstacles into the ground. In order to achieve the maximum soil bucket volume, this paper introduces a novel engineering model that was developed as a virtual excavator in the design phase. Through this model, the designs of mechanical and control systems for autonomous excavator are executed and modified easily before developing in real testbed. Based on a concept of an autonomous excavation, a mechanical system of excavator was first designed in SOLIDWORKS, and a soil model also was modeled by finite-element analysis in ANSYS, both modeled models were then exported to ADAMS environment to investigate the digging behavior through virtual simulation. An intelligent control strategy was generated in MATLAB/Simulink to control the excavator operation. The simulation results were demonstrated by effectiveness of the proposed excavator robot in testing scenarios with many soil types and obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.