Abstract

The effects of KrF excimer laser pulses on the crystalline and optical properties of structures with four InxGa1−xAs/GaAs quantum wells (x ranged from 0.08 to 0.25) were studied. The results obtained by Raman spectroscopy and reflection spectroscopy showed that the high crystalline quality of the GaAs cap layer is retained after exposure to laser radiation with an energy density of 200 to 360 mJ/cm2. It was established experimentally by photoluminescence spectroscopy and by modeling the laser annealing process, which is a solution to the problem of heat propagation in a one-dimensional GaAs-based system, that the thermal effects that occur in heterostructures under pulsed laser irradiation below the GaAs melting threshold lead to relaxation of mechanical stresses. At the initial stages of this process, the point defects appear in InxGa1−xAs/GaAs quantum wells. The latter lead to a “red” shift of the photoluminescence emission peaks of quantum wells and serve as centers of nonradiative recombination, which causes the quenching of the photoluminescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call