Abstract
전염병 확산에 대한 확률과정모형으로 활용되는 분기과정은 실제 데이터를 통해 모수를 추정할 수 있다는 장점이 있다. 음이항 분포를 분기과정의 생산 분포 모형으로 적용할 수 있는데 음이항 분포를 적용하기 위해서는 평균과 산포 모수를 추정하여야한다. 기존의 생물학 연구와 역학 연구 분야에서는 이를 최대우도법을 이용하여 추정하고 있다. 그러나 대부분의 역학 자료의 특성상 분기과정에서 이용되는 음이항 분포는 소표본이어서 최대우도 추정량의 정도를 충족시킬 수 없다. 본 논문에서는 소표본 자료에서 좋은 통계량의 성질을 만족한다고 알려져 있는 베이지안을 이용하여 모수를 추정하는 방법을 제안한다. 2015년 국내 메르스 사례에 베이지안 방법을 적용하여 모수를 추정하고 사후 분포를 적합하였다. 그 결과 어떠한 사전 분포를 가정하더라도 안정적으로 모수를 추정하는 것을 알 수 있었다. 추정된 산포 모수를 이용하여 분기과정에서의 전염병 소멸 확률을 유도하였다. Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have