Abstract
The steam generator feedwater flow-rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow-rate in pressurized water reactors, may result in unnecessary plant power derating. The back-propagation network was used to generate models of signals for a pressurized water reactor. Multiple-input, single-output hetero-associative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow-rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.