Abstract

Subject and Purpose. Currently, numerous ideas and different methods have been in growth for generating vortex beams — areas of the circular motion of the electromagnetic wave energy flow around the so-called phase singularity points caused by a violation of the wave front topological structure. The purpose of this work is to obtain analytical expressions describing the nonparaxial diffraction of wave modes of the waveguide resonator of a terahertz laser during the wave mode interaction with a spiral phase plate. The resulting vortex beams are examined for their physical features in free space propagation. Methods and Methodology. The Rayleigh-Sommerfeld vector theory is adopted to consider the propagation of vortex laser beams generated by wave modes of the quasi-optical waveguide cavity when interacting with a spiral phase plate in different diffraction zones. Results. For the first time, analytical expressions have been obtained to describe the nonparaxial diffraction of wave modes of the waveguide resonator of a terahertz laser, when resonator modes interact with a spiral phase plate at different topological charges, n. The physical features of the resulting vortex beams were studied in their free space propagation. It has been shown that a spiral phase plate modifies the structure of the linearly polarized EH₁₁ mode so that the original (n=0) intensity profile with the maximum energy at the center turns at n=1 and 2 into a ring-like donut shape with an energy hole in the center. The azimuthally polarized TE₀₁ mode has originally (n=0) a ring-shaped intensity. At n=1, this configuration changes to have the maximum intensity in the center. At n=2, it becomes annular again. In the process, the spherical phase front of the beam of the linearly polarized EH₁₁ mode becomes spiral and have one singularity point on the axis, whereas the phase structure of the azimuthally polarized TE₀₁ mode gains a region with two phase singularity points off the axis. Conclusions. The results of the study can effectively facilitate information transfer in high-speed THz communication systems. They can provide a real platform to perform tasks related to tomography, exploring properties of materials, detecting astrophysical sources, which makes them very promising in modern technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.