Abstract

The paper presents investigation results concerning a magneto-optic effect occurring in the far infrared range in bismuth. The investigation involves recording transmission in a planar waveguide located in a variable magnetic field. We ran a numerical simulation of the magneto-optic spectrum shapes in the relaxation-time approximation and determined a set of parameters for the electron energy spectrum in bismuth in the effective mass tensor approximation. We found that there is a discrete function describing how relaxation time and charge carrier concentration depend on the magnetic field magnitude. The function stems from the presence of electrons with different effective masses, which are concentrated in the three equivalent L points of the Brillouin zone, and holes in the T point of the Brillouin zone, which have topologically unconnected anisotropic constant energy surfaces

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call