Abstract

Laser heat treatment is one of the effective methods to improve the operational characteristics of metal-cutting tools. In the practice of laser hardening, there are several methods to select treatment mode: experimental, calculated, and according to reference data. The finite element method is promising for estimating the treatment zone parameters, and its application is the most in-demand for calculating the temperature field of a geometrically complex tool. When organizing the hardening process, the selection and setting of processing modes for the cutting wedge tip are the most difficult. In this regard, the solution for the multifactorial problem of optimizing the hardening scheme of an area near the tool tip is relevant when designing and automating the process of blade tool laser hardening. Using the finite element method in the ANSYS Workbench software, the authors carried out the numerical experiments to optimize the laser hardening scheme of the tool cutting wedge tip on the example of an instrument with a wedge angle equal to 60°. The paper considers three variants of the hardening scheme. The first variant is the implementation of multiple processing of an area adjacent to the tool tip. The second one consists of alternate movement of laser treatment spots along the cutting edges within the tool tip area. According to the third variant, the treatment spots were sequentially located along the bisector of an angle at the tool tip. The study showed that, according to the maximum depth criterion, an optimal hardening scheme is a scheme, which consists of alternate movement of laser treatment spots along the cutting edges in the tool tip area. In this case, the hardening zone characteristics are ensured that exceed similar values describing the hardening zone for other laser treatment options for the tool cutting wedge tip.

Highlights

  • Key characteristics of the laser treatment process according to scheme No 3

  • Numerical Investigation by the Finite Difference Method of the Laser Hardening Process Applied to AISI4340 // Journal of Applied Mathematics and Physics. 2018

  • Yaresko S.I. Finite-Element Modeling in the Technology of Hardening Laser Processing of a Metal-Cutting Tool // Journal of Engineering Physics and Thermophysics

Read more

Summary

Оптимальная схема лазерного упрочнения вершины режущего клина инструмента

Аннотация: Лазерная термообработка является одним из эффективных методов повышения эксплуатационных характеристик металлорежущего инструмента. Перспективным для оценки параметров зоны обработки является применение метода конечных элементов, использование которого наиболее востребовано для расчета температурного поля сложнопрофильного инструмента. При организации процесса упрочнения наиболее сложными являются выбор и назначение режимов обработки вершины режущего клина. Что по критерию максимальной глубины оптимальной является схема упрочнения, заключающаяся в попеременном перемещении пятна лазерной обработки вдоль режущих кромок в области вершины инструмента. CAE-системы на основе метода конечных элементов (КЭ) находят применение при проектировании и оптимизации существующих технологических процессов металлообработки, изучении контактного взаимодействия и характеристик процесса трения [7,8,9], анализе температурного поля и напряженного состояния инструмента при различных видах механической обработки, например при фрезеровании [10; 11] или штамповке [12]. Цель работы – выбор оптимальной схемы упрочнения области около вершины режущего клина инструмента по критерию обеспечения максимальной глубины упрочнения на основе анализа температурного поля при импульсной лазерной обработке

МЕТОДЫ ИССЛЕДОВАНИЙ
Лазерное излучение
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
No варианта ЛО
СПИСОК ЛИТЕРАТУРЫ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call