Abstract

In this paper, we implemented a polarimetric vibration sensor using a Sagnac birefringence interferometer composed of polarization-maintaining photonic crystal fiber(PM-PCF). By changing the amplitude and frequency of vibration applied to PM-PCF employed as the sensor head of the proposed sensor, sensor responses to various types of vibration were investigated. First, the vibration characteristic of the sensor was explored for a single frequency in a frequency range from 1 to 3000Hz with a cylindrical piezoelectric transducer, and then the sensor response to naturally damped vibration was examined by utilizing a metal cantilever. It was experimentally observed that the sensor output signal was deteriorated by more than 3dB at ∼1900Hz in the single frequency vibration measurement with a minimum detectable strain perturbation of ∼1.34nε/HzSUP1/2/SUP at 1500Hz and the peak value of the sensor output signal was proportional to the strength of initially applied stress in the naturally damped vibration measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.