Abstract

Here, we demonstrated a polarimetric fiber vibration sensor based on a polarization-diversity loop structure (PDLS) by using polarization-maintaining photonic crystal fiber (PM-PCF). The PDLS is composed of a polarization beam splitter, PM-PCF, and polarization controllers, forming a Sagnac birefringence interferometer (SBI) that has periodic interference spectra. When static strain is applied to PM-PCF used as a sensor head, spectral shift is observed in the output interference spectrum of the SBI of the sensor. If a monochromatic light source such as a laser diode is introduced into the SBI, the output optical power of the SBI is determined by its wavelength-dependent transmittance. If the wavelength of the light source is properly located at a spectral region where the transmittance of the SBI linearly varies, therefore, the magnitude of strain applied to PM-PCF can be found by observing the output voltage variation of a photodetector connected to the output port of the SBI. To investigate the vibration response of the proposed sensor with respect to various types of vibration, vibration diverse in the amplitude and frequency was applied to 8-cm-long PM-PCF by using a cylindrical piezoelectric transducer or a metal cantilever. First, vibration characteristics were examined for single frequency vibration in a range of 1−3000 Hz. Then, the sensor response to naturally damped vibration was explored. It was experimentally observed that the cut-off frequency was ~1900 Hz in the frequency response, and the peak value of the sensor output signal increased with the amount of impulse for naturally damped vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.