Abstract

In this study, CFD model for a Heat Exchange Steam Reformer (HESR) used for a 10kW SOFC system is developed for the design optimization of the HESR. The model is used to explore the effect of design parameters on the performance of the HESR. In the HESR, heat is delivered from the hot gas channel to the fuel channel to supply the heat required for the fuel reforming. In the fuel channel where the fuel is reformed, thermo-fluid dynamics, heat transfer, and chemical reaction are considered to predict the performance of the reformer. The model is validated with experimental data within 2~3% error. The validated model is used for the parametric study of the HESR design. Channel length, channel diameter, and flow direction are selected as the design parameters. The effects of the HESR design parameters on the outlet temperature, outlet H2 mole fraction, and pressure drop across the reformer are presented using the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.