Abstract
Recently, wide spread distribution of the giant jellyfish, Nemopilema nomurai, has occurred in the East China Sea. This increased distribution has caused serious problems in inshore and offshore fisheries in Korea and Japan. As a result, it is necessary to evaluate the damage caused to the fisheries by jellyfish. Accordingly, several hydroacoustic studies have been conducted to estimate the target strength (TS) of the giant jellyfish. However, the effects of fluctuation in the acoustic scattering characteristics on swimming patterns have not yet been elucidated. Therefore, in this study, we theoretically estimated the effects of changes in the acoustic scattering pattern on the swimming behavior of jellyfish using the Distorted Wave Born Approximation (DWBA) model. The results confirmed that acoustic scattering of jellyfish results in a significant change in their swimming pattern. Specifically, our theoretical estimation indicated that the TS of giant jellyfish (d=40 cm) fluctuated until 8.5 dB at 38 kHz, 13.8 dB at 70 kHz, and 15.1 dB at 120 kHz based on changes in their swimming patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.