Abstract

AbstractThe peculiarities of the phase composition and electronic structure of aluminum–silicon composite films near the Al_0.75Si_0.25 composition obtained by the magnetron and ion-beam sputtering methods on a Si(100) silicon substrate are studied using the X-ray diffraction techniques and ultrasoft X-ray emission spectroscopy. In addition to silicon nanocrystals of about 25 nm in size, an ordered solid solution corresponding to the previously unknown Al_3Si phase is formed in magnetron sputtering on a polycrystalline Al matrix. Films obtained by ion-beam sputtering of the composite target are found to be monophasic and contained only one phase of an ordered solid solution of aluminum silicide Al_3Si of the Pm3m cubic system with the primitive cell parameter a = 4.085 Å. However, subsequent pulsed photon annealing of the composite with different radiation doses from 145 to 216 J/cm^2 gives rise to the partial decomposition of the Al_3Si phase with the formation of free metallic aluminum and silicon nanocrystals with sizes in the range from 50 to 100 nm, depending on the pulsed photon radiation dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call