Abstract
The structure and features of a software package for 3D inversion of geophysical data are considered. The presented software package is focused on solving direct and inverse problems of electrical exploration and engineering geophysics. In addition to the parameters that determine physical properties of the medium, the software package allows you to restore the geometry parameters of the geophysical model, namely layer reliefs and boundaries of three-dimensional inclusions. The inclusions can be in the form of arbitrary hexagons or prisms with a polygonal base. The software package consists of four main subsystems: an interface, subsystems for solving direct and inverse problems, and a client-server part for performing calculations on remote computing nodes. The graphical interface consists of geophysicist-oriented pre- and postprocessor modules that allow you to describe the problem and present the results of its solution in user-friendly terms. To solve direct problems, the finite element method and the technology for dividing the field into normal and anomalous components are used. At the same time, special methods of discretization of the computational domain are used, which make it possible to take into account both the complex three-dimensional structure of the environment and the presence of man-made objects (wells) in the computational domain. To increase the efficiency of solving direct problems, nonconforming grids with cells in the form of arbitrary hexahedrons are used. Methods for efficient calculation of derivatives (with respect to these parameters) necessary for solving inverse problems by the Gauss-Newton method are also described for the geometry parameters. The main idea for efficient derivatives computation is to identify the effect of changing the value of the parameter (used to compute the value of the generalized derivative) on the problem. The main actions performed by the subsystem for solving inverse problems and the features associated with the processing of geometry parameters are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.