Abstract
Spectral analysis of the time series for average annual values of the globally averaged surface temperature anomaly shows the presence of harmonics of the lunar nodal cycle with a period of 18.6 years,whichcan be used to predict the values of theseries. Three models of theseries were considered: autoregression AR(p), combined model of autoregression – integrated moving average ARIMA(p,d,q) and artificial neural network. It is shown that the ARIMA(4,1,4) model gives the best results for predicting the global temperature anomaly for three years.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.