Abstract

Applications of a single model may not be able to capture different data patterns well enough, especially in the tourist forecast problem which is often complex in nature. An autoregressive integrated moving average (ARIMA) is a famous linear model while an artificial neural network (ANN) is a promising alternative to a traditional linear method. The ARIMA model may not be adequate for nonlinear problems while ANN can well reveal the correlation of nonlinear patterns. However, overfitting due to a learning process is the main disadvantage of ANN as well as being trapped in a local optimum for parameters optimization. To improve the forecast performance of both ARIMA and ANN for high accuracy, the two hybridization models, i.e. hybrid ARIMA-RBFNN model and hybrid RBFNN-ARIMA model are employed to examine the Chiangmai’s tourist time series data. Statistics test and parameter designed experiments were used to optimize these models and the sum-square of error (SSE) was used to indicate their performances. In this case study, the hybrid RBFNN-ARIMA model has proved that the RBFNN can priori capture the non-stationary non-linear component while the fully linearly stationary residuals were accurately predicted by ARIMA. The experimental results demonstrated that the hybrid RBFNN-ARIMA model outperformed 42% by averaging over the hybrid ARIMA-RBFNN model, an improvement of hybrid ARIMA-RBFNN model, RBFNN model, and ARIMA model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.