Abstract

제한된 자원을 가진 센서 노드들로 구성된 센서 네트워크에서 가장 중요한 이슈 중 하나는 주어진 에너지를 최대한 활용하여 네트워크 수명을 연장하는 것이다. 네트워크 수명을 연장하는 가장 대표적인 방법은 클러스터링 방법이며, 이는 단일홉 모드와 다중홉 모드로 분류된다. 단일홉 모드는 클러스터 내의 모든 센서 노드들이 CH(Cluster Head)와 단일홉 통신을 하는 것을 말하며, 반면 다중홉 모드는 중간 노드들의 중계를 통하여 센서 노드와 CH가 통신하는 방식을 말한다. 기존의 다중홉 클러스터링 방식에서 성능 상 가장 중요한 영향을 미치는 요소는 클러스터 크기이며, 노드의 분포가 균일하다고 가정하였다. 그러나 실제 네트워크에서의 노드 분포는 균일하지 않을 수 있으므로 이러한 환경에서의 최적의 클러스터 크기 계산은 아주 어렵다. 본 논문에서는 싱크 주변의 CH에 대한 트래픽 부하를 줄이기 위하여 싱크로부터의 거리를 기반으로 클러스터 크기를 동적으로 변화시키는 다중홉 클러스터링 방법을 제안한다. 또한 수학적 분석과 시뮬레이션을 통하여 제안된 동적크기 클러스터링 방식이 기존의 고정크기 클러스터링 보다 더 나은 성능을 가짐을 보였다. One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.