Abstract

AbstractOne of the most important issues on the sensor network with resource-limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long-lived sensor network is the clustering mechanism which can be further classified into the single-hop mode and the multi-hop mode. The single-hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head (CH) via single hop and, in the multi-hop mode, sensor nodes communicate with the CH with the help of other intermediate nodes. One of the most critical factors that impact on the performance of the existing multi-hop clustering mechanism (in which the cluster size is fixed to some value, so we call this the fixed-size mechanism) is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non-uniformly, the fixed-size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic-size multi-hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed-size clustering mechanisms by carrying out numerical analysis and simulations. Keyword: Sensor Network, Clustering, Wireless Network.KeywordsSensor NetworkSensor NodeWireless Sensor NetworkCluster SizeCluster HeadThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.