Abstract

The paper contains a classification of congruence-coherent Rees algebras and algebras with an operator. The concept of coherence was introduced by D.Geiger. An algebra A is called coherent if each of its subalgebras containing a class of some congruence on A is a union of such classes. In Section 3 conditions for the absence of congruence-coherence property for algebras having proper subalgebras are found. Necessary condition of congruence-coherence for Rees algebras are obtained. Sufficient condition of congruence-coherence for algebras with an operator are obtained. In this section we give a complete classification of congruence-coherent unars. In Section 4 some modification of the congruence-coherent is considered. The concept of weak and locally coherence was introduced by I.Chajda. An algebra A with a nullary operation 0 is called weakly coherent if each of its subalgebras including the kernel of some congruence on A is a union of classes of this congruence. An algebra A with a nullary operation 0 is called locally coherent if each of its subalgebras including a class of some congruence on A also includes a class the kernel of this congruence. Section 4 is devoted to proving sufficient conditions for algebras with an operator being weakly and locally coherent. In Section 5 deals with algebras ⟨ A,d,f ⟩ with one ternary operation d ( x,y,z ) and one unary operation f acting as endomorphism with respect to the operation d ( x,y,z ). Ternary operation d ( x,y,z ) was defined according to the approach offered by V.K. Kartashov. Necessary and sufficient conditions of congruence-coherent for algebras ⟨ A,d,f ⟩ are obtained. Also, necessary and sufficient conditions of weakly and locally coherent for algebras ⟨ A,d,f, 0⟩ with nullary operation 0 for which f (0) = 0 are obtained.

Highlights

  • Conditions for the absence of congruence-coherence property for algebras having proper subalgebras are found

  • On A is a union of classes of this congruence

  • An algebra A with a nullary operation 0 is called locally coherent if each of its subalgebras including a class of some congruence on A includes a class the kernel of this congruence

Read more

Summary

Введение

Универсальная алгебра A конгруэнц–когерентна, если любая подалгебра в A, содержащая класс произвольной конгруэнции в A, является объединением классов этой конгруэнции. В [2] показано, что многообразие, порождаемое квазипримальной алгеброй, является конгруэнц–когерентным. В [3] получено полное описание конгруэнц–когерентных алгебр де Моргана и p–алгебр. В работе [5] доказано, что если декартов квадрат алгебры конгруэнц–когерентен, то сама алгебра конгруэнц– регулярна и потому конгруэнц–перестановочна. В [6] описаны конгруэнц–когерентные двойные де Морган–Стоуновы алгебры. В работе [7] получено полное описание конгруэнц–когерентных алгебр в классе симметричных расширенных алгебр де Моргана. Подалгебра B алгебры A называется подалгеброй Риса, если объединение диагонали и квадрата B × B является конгруэнцией в A. Алгебра A является алгеброй Риса, если любая ее подалгебра является подалгеброй Риса. Указанные алгебры изучались в работах [13, 14, 15, 16, 17]

Необходимые определения
Конгруэнц–когерентные алгебры
Модификации когруэнц–когерентности
Унары c мальцевской операцией и близкие алгебры
Заключение
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.