Abstract
In spite of the emphasis on quality control in auto-industry, most of subcontract enterprises still lack a systematic in-process quality monitoring system for predicting the product/part quality for their customers. While their manufacturing processes have been getting automated and computer-controlled ever, there still exist many uncertain parameters and the process controls still rely on empirical works by a few skilled operators and quality experts. In this paper, a real-time product quality monitoring system for auto-manufacturing industry is presented to provide the systematic method of predicting product qualities from real-time production data. The proposed framework consists of a product quality ontology model for complex manufacturing supply chain environments, and a real-time quality prediction tool using support vector machine algorithm that enables the quality monitoring system to classify the product quality patterns from the in-process production data. A door trim production example is illustrated to verify the proposed quality prediction model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have