Abstract

Honeycomb is described by orthotropic homogeneous media. The mechanical properties of the media are described by the simulation of the stress state honeycomb in commercial software ANSYS. The classical hexagonal honeycomb is analyzed numerically. The other types of the honeycomb are not considered in this paper. The media, which is obtained as a result of homogenization, has orthotropic mechanical properties. The honeycomb is produced from polycarbonate, which is orthotropic material. The suggested approach can be applied to other materials, which are used for 3D printing. The mechanical properties of this honeycomb material are determined experimentally for specimens, which are produced by FDM manufacturing. The matrix of the Hooke law is obtained in the result of six finite element calculations of the cell part of the honeycomb. To determine the different elements of this matrix, the cell part of the honeycomb undergoes different boundary conditions and different stressing. The fourth part of one cell is considered to calculate honeycomb mechanical properties. The software ANSYS is used to calculate the fourth part of the cell. The area near the cell part is filled up to cube using elastic air. The elastic air is isotropic material with a small Young modulus. The cube sides undergo constant displacements to perform numerical analysis. Such different displacements are equal to six. As a result of the numerical simulations, the elements of the stress tensor are determined by the stress averaging on the volume of the finite element. As a result of calculations, the set of nine engineering constants of orthotropic homogeneous media is obtained. Analysis of the convergence of the numerical simulation results is carried out for numerical simulations of the stress state by the concentration of the finite element mesh. As follows from the convergence analysis, 1745481 3D finite elements are enough for the discretization of the cube area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call