Abstract

The article considers an approach to assessing the effectiveness of the most common methods of predicting the technical conditions and failure with reference to the ship shafting. There have been analyzed the main factors in operation of the ship shaft line, which cause the change in its technical state. It has been found that a special feature of some loads acting on the propeller shaft is their stochastic or changing nature over time, which hampers predicting the technical state of the shafting and its units. The features of stochastic and extrapolation forecasting methods have been analyzed. The possibility of using statistical methods in conditions of mass standard production of shafting units with a relatively short regulated service life is estimated. An extrapolation method is proposed for predicting the maximum permissible clearance of stern tube bearings. The case of accumulating samples of measuring results of the propeller shaft sagging in the given time intervals is considered, the approximating functions are constructed. The criteria for the reliability of the results of extrapolation methods for predicting the wear of stern tube bearings are determined. There have been developed the proposals for adapting the causal method as an alternative to the extrapolation method. A schematic diagram of a system for the ship shafting failure predicting has been developed using the registration and analysis of vibration parameters, which serves as the basis for constructing a regression model of damage accumulation. The proposed forecasting system allows studying the actual operating conditions of the shafting, defining the actual external loads and the regularities of their occurrence, measuring deformations and stresses, and determining quantitative indicators of the reliability of the shafting during normal operation and special operating modes, for example, with vibration resonance. The theoretical basis of the algorithm for calculating and registering loads affecting the service life of shafts is proposed.

Highlights

  • The article considers an approach to assessing the effectiveness of the most common methods of predicting the technical conditions and failure with reference to the ship shafting

  • There have been analyzed the main factors in operation of the ship shaft line, which cause the change in its technical state

  • It has been found that a special feature of some loads acting on the propeller shaft is their stochastic or changing nature over time, which hampers predicting the technical state of the shafting and its units

Read more

Summary

Introduction

The article considers an approach to assessing the effectiveness of the most common methods of predicting the technical conditions and failure with reference to the ship shafting. Одной из особенностей существенной части действующих на гребной вал нагрузок является их стохастический характер, что приводит к усложнению прогнозирования технического состояния валопровода и его узлов. В связи с этим разработка и совершенствование методов прогнозирования отказа валопровода в условиях малого количества входных статистических данных и изменяющихся режимов работы является актуальной задачей как для вновь проектируемых судов, так и для находящихся в эксплуатации. В работе [6] приведен сравнительный анализ возможностей и функциональных особенностей наиболее применимых методов прогнозирования технического состояния судового энергетического комплекса.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.