Abstract

The properties of zinc oxide nanostructures allow it to be used in various fields of science and technology. The increased interest in this compound is caused by a rare combination of optical and electrophysical properties. The films of this compound have good piezoelectric and electroluminescent properties, due to which zinc oxide can be used as functional layers in surface acoustic waves, elements of nonlinear optics. This allows the oxide to pass visible radiation. In this paper, we study the influence of the conditions for obtaining a coating by pulsed electrochemical deposition on the forbidden zones and the power of a coating based on zinc oxide. It was shown that the temperature and duty cycle of pulses are of great importance in the formation of the coating, which is explained by the kinetics of the electrochemical reaction. The Urbach energy increases with a decrease in crystalline size and increased by almost 3 times, compared with a coarse-grained sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.