Abstract

The article considers the issue of increasing the efficiency of coolers of the material heated during drying by using a heat pump unit to produce artificial cold. The scheme of use of a thermal pump in a complex with the drying installation and the portable cooler of material is offered. A mathematical description of the stationary modes of operation of the drying unit, material cooler and heat pump elements on the basis of a steam compressor refrigeration unit is formulated. At creation of physical and mathematical models of heat and mass transfer in the course of drying and cooling of material (grain) the following conditions are accepted simplifying the mathematical description, but without changing real process: moisture from the material is removed according to Dalton's evaporation law, while the moisture in the material evaporates and is removed simultaneously; moisture content and temperature in the volume of the material are evenly distributed, heat and mass transfer occurs only between the surface of the material and the drying agent; the effects of radiation and contact heat transfer are taken into account by heat transfer coefficients; stationary fields of temperature and moisture content are assumed to be one-dimensional, which vary according to the coordinate calculated in the direction of movement of the material; when cooling the moisture removal material is not taken into account for low residual moisture; the size of the surface of the material in the process of drying and cooling does not change; the heat exchange equipment of the heat pump is an object with concentrated parameters. Using the obtained mathematical dependences, graphical dependences of changes in grain and air temperature are constructed, which allow to evaluate the expediency of using a heat pump. The formulated mathematical model of stationary modes of the heat pump drying unit with artificial cooling of the dried material can be used to evaluate the feasibility and energy efficiency of the used refrigeration machines for grain cooling, especially after high-temperature processing. The obtained analytical dependences in the form of a closed system of equations can be used to optimize the parameters of the heat pump drying unit by the criterion of minimizing energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call