Abstract

The accuracy of the coordinates of ground objects measured using optical instruments by unmanned aerial vehicles depends on many factors including: errors in measuring the angular coordinates of the optical system, the distance to the object, the presence of heterogeneous terrain, etc. Traditional use of optoelectronic systems functioning based on inertial sensors demonstrated their flaws, such as low accuracy at ground objects positioning for target designation to unmanned aerial vehicles due to declination angle and azimuth determination inaccuracy. In this work, a variant of optimizing the algorithm for analyzing and processing information in an optoelectronic system for determining the coordinates of ground objects from an unmanned aerial vehicle is presented. An algorithm and a method for determining geographical coordinates based on an electronic height matrix have been developed. An increase in the accuracy of calculating the coordinates of an object was achieved by minimizing the error of measuring the declination angle, azimuth on a ground object and inclined range. A description of a full-scale experiment with a car on the ground is given. Its essence was that according to several freeze frames obtained by the optoelectronic system of an unmanned aerial vehicle at a considerable distance with a large inclined range, the geographical coordinates of the car were determined in two ways (traditional and developed). With the help of the method proposed by the authors, the accuracy of determining coordinates has been increased several times. The developed algorithm and method for information processing make it possible to create a variety of hardware and software solutions for guidance and target designation systems of unmanned aerial vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.