Abstract

Здійснено порівняльний аналіз різних методів оброблення природної мови для виявлення симптомів ментального захворювання. Розглянуто принцип роботи та ефективність моделей оцінювання семантичної когерентності тексту (моделі тан-генційності та некогерентності) для класифікації текстів здорових і хворих осіб. У роботі зазначається залежність точності моделей некогерентності та тангенційності від моделі семантичного представлення фрагментів тексту; підкреслюється недолік використання такої моделі в зв'язку з відсутністю можливості враховувати регулярне повторення фраз. Проаналізовано переваги та недоліки застосування комбінації моделей семантичного представлення елементів тексту для врахування постійних повторів його фрагментів. Обґрунтовано доцільність застосування лінгвістичних характеристик тексту пацієнта для підвищення точності класифікаторів виявлення симптомів захворювань та розрізнення їх типу. Розглянуто можливість аналізу частоти появи неоднозначних займенників у тексті для підвищення точності класифікації даних. Проаналізовано особливості застосування різних методів виявлення симптомів ментального захворювання для текстів англійською, німецькою та російською мовами. Запропоновано здійснювати оцінювання зв'язності тексту за допомогою графу узгодженості словосполучень. Здійснено експериментальну перевірку ефективності пропонованого підходу для побудови класифікаційної моделі порівняно з іншими характеристиками тексту.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.