Abstract

Department of Electronics Engineering, Hanbat National University, Daejeon 34158, Korea(Received September 21, 2015; Revised December 2, 2015; Accepted December 7, 2015)Abstract: In this paper, in order to quantify the peristalsis occurrence in a guinea pig`s large intestine, a miniaturized air-gap capacitive pressure sensor was fabricated through micro-electro-mechanical system (MEMS). The proposed pressure sensor is a two-layered biocompatible polyimide substrate consisting of an air-gap capacitive plates between the substrates. The proposed pressure sensor was designed with a careful consideration of the structure and motility mechanism of the guinea pig`s large intestine. Artificial pellets were mounted on a prototype pressure sensor to provide some redundancies in the form of size and shape of the guinea pig feces. Capacitance of a prototype sensor was recorded to be 2.5 ~ 3 pF. This capacitance value was later converted to count value using a lab fabricated data conversion system. Sensitivity of the pressure sensor was recorded to be below 1 mmHg per atmospheric pressure. During in vivo testing, artificial peristalsis caused by drug injection was measured by inserting the prototype pressure sensor into the guinea pig’s large intestine and pressure data obtained due to artificial peristalsis was graphed using a labview program. The proposed pressure sensor could measure the pressure changes in the proximal, medial, and distal parts of the large intestine. The results of the experiment confirmed that pressure changes of guinea pig`s large intestine was proportional to the degree of drug injection.Keywords: Pressure sensor, MEMS, Polyimide, Artificial pellet, Intestinal motility ,-

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call