Abstract

국내에서 가장 일반적으로 사용되고 있는 규칙 기반 오류 검출 방법은 언어 전문가가 한국어 문서에서 자주 발생하는 오류에 대한 검출 규칙을 경험적으로 구축하고 있다. 그러나 이렇게 경험적으로 규칙을 만들면 새로운 패턴의 문장이 나타날 때마다 규칙이 수정되어야 하므로 일관성 있는 오류 검사 및 교정을 기대할 수 없다. 본 논문에서는 이를 해결하려고 최근 개발되고 있는 어휘의미망 중에서 KorLex와 같은 정규화된 언어 자원을 활용하여 단어들의 범주 정보를 추출하고 이를 이용하여 오류 결정 규칙을 일반화한다. 그러나 현재 구축된 KorLex에는 명사의 계층관계 정보는 구축되어 있지만, 문장 요소와의 관계 정보, 즉, 격틀 정보가 부족하다. 본 논문에서는 용언 의미 오류 결정 규칙으로 사용할 선택제약 명사 클래스를 정보이론에 기초한 MDL과 Tree Cut Model을 활용하여 추출하고 이러한 선택제약 명사 클래스를 사용하여 문법 검사기 규칙을 일반화하는 방안을 제안한다. 실험 결과, 혼동하기 쉬운 네 개의 용언에 대해 목적어로 사용된 명사를 선택제약 명사 클래스로 일반화하여 문법 검사기 오류 결정 규칙 수를 평균 64.8%로 줄였고 기존 명사를 사용한 문법 검사기보다 정확도 측면에서 평균 약 6.2%정도 향상된 결과를 얻을 수 있었다. Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.