Abstract

The production of biofuel pellets requires significant energy consumption during their production. At the primary technological stage of production: grinding of solid vegetable waste (SVW), electricity costs can be, depending on the physical and mechanical characteristics of SVW, 40… 60% of the total electricity consumed for the production of pellets. Significant losses of electric energy are observed during grinding due to uneven loading of the shredder and operation of the electric motor of its drive in constantly changing modes. This is especially true for small productions when downloading is done manually. This paper proposes a method and algorithm for determining the maximum values of the energy efficiency of the SRW grinding system for the production of biofuel pellets as a function of the load factor of the electric motor of the working machine at different values of applied voltage. As a result of research of an asynchronous electric motor with a nominal power of 4 kW SVW shredder during its operation according to the loading schedule during the eight-hour work shift provided by the farm, it was determined that control of applied voltage at variable loads will reduce energy consumption and increase the energy efficiency of the shredder by 4…6%. According to the results of research, it is proposed to develop a device for controlling the magnitude of the applied voltage at variable loads, the implementation of which will reduce energy consumption by the shredder drive. The proposed technique can also be used in the diagnosis of the electric motor of the shredder, which is in the process of operation of the technological line of production of pellets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.