Abstract

AbstractThe results of diagnostics of the atomic composition of a diphenylphthalide (DPP) film thermally precipitated in vacuum by the of X-ray photoelectric spectroscopy (XPS) method are presented. The results of examination of the unoccupied electronic states of the ultrathin DPP films with the thickness up to 10 nm on the surface of the highly oriented pyrolytic graphite (HOPG) by the total current spectroscopy (TCS) method in the energy range from 5 to 20 eV above E _F are presented. In this range, the main maxima in the total current spectra are identified. The analysis of the TCS results with consideration of the theoretical calculation results has shown that the low-energy maxima observed at the energies from 6 to 7.5 eV are induced predominately by π* electron orbitals of DPP films. The values of the energy E _vac in relation to E _F, i.e., of the electron work function in the DPP films at the film thickness of 5–10 nm, are found experimentally at a level of 4.3 ± 0.1 eV. The negative charge transfer from an organic film to the substrate corresponds to the formation of the HOPG/DPP boundary potential barrier during the thermal deposition of the DPP film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.