Abstract

The results on comparing the peak structure of the density of unoccupied electronic states (DOUS) of ultrathin films of naphthalene anhydride-1,4,5,8-teracabonic acid (NTCDA) and naphthalene-1,8-dicarboxylic acid anhydride (NDCA) and of two types of phthalide-based films: 3,3-bis (phenyl) phthalide (DPP) and 3,3-bis (phenyl) phthalide-4 ′, 4′-dicarboxylic acid (DPP-DCA) are presented. The measurements of the structure of the unoccupied electronic states in the energy range from 5 eV to 20 eV above the Fermi level of the films studied having thickness of 8–10 nm were conducted using the total current spectroscopy (TCS) technique. Analysis of the experimental results was conducted using the model total current spectra and DOUS dependences generated using the calculated orbital energies of the studied molecules by means of the density functional theory (DFT) method at the B3LYP/6-31G(d) level. The difference in the DOUS spectra of NTCDA and NDCA films is characterized by the shift of the main DOUS maxima of the NTCDA film to lower energies by about 1 eV at energies less than 12.5 eV, and at higher energies the DOUS maxima are shifted by 1.5-2 eV. The energy positions of the maxima of the total current spectra of the DPP-DCA and DPP films practically do not change when using various substrates: highly ordered pyrolytic graphite (HOPG) and layer-by-layer deposited CdS. The relative intensities of the maxima differ when using different substrates. The characteristic shift of the maxima of the total current spectra of DPP-DCA films is about 1 eV at energies less than 12.5 eV above the Fermi level and 1.5-2 eV and at higher energies, compared with the position of the corresponding maxima of the DPP films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call