Abstract

The results of an ab-initio molecular dynamics study of the electronic and thermophysical properties of methane hydrate with a cubic sI structure are presented. Good agreement of the simulation results for heat capacity at constant volume and density with experimental data is found. Based on the analysis of the density of electronic states, the temperature dependences of the electronic properties of methane hydrate, including the Fermi energy level, width and boundaries of the band gap are determined. For the empty framework of the hydrate (water clathrate framework), the electron energy spectra E(k) were calculated along the directions M-X, X-G, G-M, and G-R. It was found that the presence of CH4 molecules in an aqueous clathrate leads to an increase in the Fermi energy of the hydrate from 2.4 to 3.0 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.