Abstract
This study has investigated ab initio pseudopotential calculations on the structural, electronic, elastic, vibrational and thermodynamic properties of the full-Heusler X2ScGa (X = Ir and Rh) alloys. The calculations have taken place under consideration of the generalized gradient approximation (GGA) of the density functional theory (DFT) with using the plane-wave ab initio pseudopotential method. According to the calculations, the major contribution to electronic states at the Fermi energy has been achieved by d orbitals, revealing a more active role for transition metals Ir (Rh) and Sc atoms. The reckonings point out that the Ir2ScGa and Rh2ScGa have metallic behavior at the equilibrium lattice constant with the density of states (DOS) at the Fermi level (N (EF)) of 1.412 states/eV and 1.821 states/eV, respectively. The results of the elastic constants showed that these compounds met the criteria for Born mechanical stability. It was also observed that they have a ductile structure and exhibit anisotropic behavior according to Pugh criteria. Besides, the full phonon spectra and their projected partial density of states of the alloys have been analyzed with the first-principle linear-response approach of the density-functional perturbation theory. All the alloys behaved dynamically stable in the L21 phase. Furthermore, internal free energy, entropy, specific heat capacity at constant volume and vibrational free energy changes of Ir2ScGa and Rh2ScGa alloys were analyzed and discussed between the temperature range of 0–800 K using the quasi harmonic approximation. According to the results, these alloys are potential candidate for industrial use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.