Abstract
Recently, more and more people have become aware of the need to protect the environment and find new ways to protect our planet from various types of pollution. In this regard, science and technology play an important role in finding new solutions to protect the environment. One innovative development is boron-carbon nanotubes, which contain equal amounts of boron and carbon atoms. Modification of such nanotubes with an amine group would allow to use them for creation of highly sensitive sensor devices, which would help to control the levels of lithium, sodium, potassium in the environment and prevent their negative impact on nature and human health. In this article, a theoretical study of the sensing properties of a functionalized amino-group boron-carbon nanotube of the zig-zag type (6.0) containing equal amounts of carbon and boron is discussed. Such a nanotube could act as an element of a sensor device for environmental protection. The simulation was performed within a molecular cluster model using the DFT computational method, the B3LYP functional, and the 6-31G basis set. It is concluded that the system can be used to detect the presence of alkali metal atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.