Abstract

In this article, a theoretical study of the sensing properties of a functionalized amino-group boron-carbon nanotube of the zig-zag type (6.0) containing equal amounts of carbon and boron is discussed. Such a nanotube could act as an element of a sensor device for environmental protection. The simulation was performed within a molecular cluster model using the DFT computational method, the B3LYP functional and the 6-31G basis set. The main characteristics of nanotube functionalization, its sorption and sensory activity with respect to the alkali metal atoms Li, Na, and K are obtained. It is concluded that the system can be used to detect the presence of alkali metal atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call