Abstract
In this article, several types of hybrid forecasting models are suggested. In particular, hybrid models using the generalized additive model(GAM) are newly suggested as an alternative to those using neural networks (NN). The prediction performances of various hybrid and non-hybrid models are evaluated using simulated time series data. Five different types of seasonal time series data related to an additive or multiplicative trend are generated over different levels of noise, and applied to the forecasting evaluation. For the simulated data with only seasonality, the autoregressive (AR) model and the hybrid AR-AR model performed equivalently very well. On the other hand, if the time series data employed a trend, the SARIMA model and some hybrid SARIMA models equivalently outperformed the others. In the comparison of GAMs and NNs, regarding the seasonal additive trend data, the SARIMA-GAM evenly performed well across the full range of noise variation, whereas the SARIMA-NN showed good performance only when the noise level was trivial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.