Abstract

The amount of energy required to perform technological processes in agriculture largely depends on the size of the resistance to the displacement of the working bodies of machines. The main factor of energy consumption performing the technological process of potato harvesting is the resistance to the displacement of the digestive working body. In order to reduce the resistance to displacement an improved design of the digging body is proposed. An analytical study was conducted to determine the problem of moving the working body in the soil environment. The strength of the soil resistance is determined and the regularity of the influence on its change of parameters and the shape of the blade and separation parts of the digging working body is established. Calculations are made using the Mathematica application programm. The graphic dependences and contours of the isoline of the traction flange of the working part of the working body are obtained. Analysis of the calculations allowed to set the parameters of the surface of the dashboard, which provide a minimum of traction resistance. The schedule and contours of isolines of the change of the total resistance to the displacement of the soil mass with the tubers by the separation surface of the working organ in the function of the distance between the bars and the size of their intersection are also obtained. Analysis of the dependence of soil resistance and tubers on the separation surface indicates that an increase in the size of the geometric size of the intersection of the rods leads to a significant increase in the resistance of the medium. The material presented in the article can be used for analytical determination of the resistance of the excavation working body of potato harvesting machines of arbitrary geometric shape in the soil medium with tubers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.